On regular interstices and selective types in countable arithmetically saturated models of Peano Arithmetic

نویسنده

  • T. Bigorajska
چکیده

We continue the earlier research of [1]. In particular, we work out a class of regular interstices and show that selective types are realized in regular interstices. We also show that, contrary to the situation above definable elements, the stabilizer of an element inside M(0) whose type is selective need not be maximal.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Automorphism Group of an Arithmetically Saturated Model of Peano Arithmetic

One of the main goals in the study of the automorphism group Aut {Jt) of a countable, recursively saturated model Jt of Peano Arithmetic is to determine to what extent (the isomorphism type of) Jt is recoverable from (the isomorphism type of) Aut(^). A countable, recursively saturated model Jt of PA is characterized up to isomorphism by two invariants: its first-order theory Th(^ ) and its stan...

متن کامل

Tutorial on Elementary Pairs of Models of Arithmetic

Almost all results in model theory of arithmetic are about elementary extensions. I will talk about an effort to systematize those results. If M and N are models of arithmetic and M ≺ N , how much information is there in Th((N,M)) in relation to Th(N)? In what situations is there a form of elimination of quantifiers for Th((N,M))? Is there a complete set of isomorphism invariants for such pairs...

متن کامل

Automorphisms of models of arithmetic: A unified view

We develop the method of iterated ultrapower representation to provide a unified and perspicuous approach for building automorphisms of countable recursively saturated models of Peano arithmetic PA. In particular, we use this method to prove Theorem A below, which confirms a long standing conjecture of James Schmerl. Theorem A. If M is a countable recursively saturated model of PA in which N is...

متن کامل

The ∆ 02 Turing degrees : Automorphisms and Definability

We prove that the ∆2 Turing degrees have a finite automorphism base. We apply this result to show that the automorphism group of DT (≤ 0′) is countable and that all its members have arithmetic presentations. We prove that every relation on DT (≤ 0′) induced by an arithmetically definable degree invariant relation is definable with finitely many ∆2 parameters and show that rigidity for DT (≤ 0′)...

متن کامل

The ∆2 Turing Degrees: Automorphisms and Definability

We prove that the ∆2 Turing degrees have a finite automorphism base. We apply this result to show that the automorphism group of DT (≤ 0′) is countable and that all its members have arithmetic presentations. We prove that every relation on DT (≤ 0′) induced by an arithmetically definable degree invariant relation is definable with finitely many ∆2 parameters and show that rigidity for DT (≤ 0′)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007